
So�ware Development (cs2500)

Lectures 47–49: Generics

M.R.C. van Dongen

February 16–21, 2011

Contents
1 Outline 2

2 Boxing and Unboxing 2
2.1 Examples . 2

2.2 Caching . 3

3 Motivation 4

4 First Solution 5

5 Comparable 5

6 Simple Generics 6

7 Subtyping 7

8 ExtendsWildcards 8

9 SuperWildcards 9

10 Get and Put 9

11 Linked Lists 10

12 Generic Lists 14

13 ForWednesday 16

14 Acknowledgements 16

1

15 Bibliography 16

1 Outline
�is lecture studies generic types. Generic types help us detect certain kinds of errors. In addition they

remove the need for certain run-time checks. �ey allow class-reuse for specialised versions of the classes.

�is lecture is based on [Na�alin and Wadler, 2009]. Some of this lecture is based on the Java api
documentation.

2 Boxing and Unboxing
�is section presents old and new information. It start by brie�y recalling boxing and unboxing. It

continues by providing some more detail about the caching mechanism for boxed values.

Primitive types such as int, boolean, float, and double in Java are not objects. Boxing turns a

primitive type into an equivalent object type. �is turns int into Integer, turns double into Double,

and so on. Boxing may be done explicitly or implicitly:

Explicit: Explicit boxing is done with the constructors of the boxed classes: new Integer(42), new
Double(3.14), ….

Implicit: Implicit boxing happens when an object is expected where a primitive type is provided. In

this case Java automatically translates the unboxed value to its boxed equivalent. �is is called

autoboxing. �e box type is determined by the primitive type. For example, if the primitive type is

int then the type of the resulting box is Integer, and so on.

Unboxing turns a boxed value into its equivalent unboxed value. Unboxing may be done explicitly

and implicitly.

Explicit: �ere are two methods to explicitly unbox a boxed value. �e �rst method uses the instance

methods of the boxed classes which return the boxed value. �ese methods are called shortValue(
), intValue(), doubleValue(), and so on. �e second method to unbox a value is casting.

Implicit: Implicit unboxing is done by using a boxed value where a primitive value is expected. If this

technique is used, the boxed value is unboxed to the type of the boxed value. A�er this it may be

coerced to a wider type. For example, if i is an Integer variable and d is a double variable, then

you may write ‘d = i’.

2.1 Examples
�e following is an example.

int intValue = 1;
Integer boxedValue;
boxedValue = Integer(42); // explicit boxing
boxedValue = intValue; // auto boxing
intValue = boxedValue.intValue(); // explicit unboxing
intValue = boxedValue; // implicit unboxing

Java

2

Notice that automatic unboxing only works if a primitive type value is expected and a value of its

boxed type equivalent is provided. �is explains why the following doesn’t work.

int intValue = 1;
Object boxedValue = intValue; // auto boxing
intValue = boxedValue; // unboxing doesn’t work

Don’t Try this at Home

Adding a cast still doesn’t work. For the cast to work, a primitive or Integer value is expected. Since

boxedValue isn’t a primitive value and isn’t an Integer the compiler will complain.

int intValue = 1;
Object boxedValue = intValue; // auto boxing
intValue = (int)boxedValue; // unboxing doesn’t work

Don’t Try this at Home

�e following �xes the problem with the previous examples. Notice that the cast in the last statement

is perfectly valid but not needed and unclear.

int intValue = 1;
Object boxedValue = intValue; // auto boxing
intValue = (Integer)boxedValue; // unboxing
intValue = (int)(Integer)boxedValue; // unboxing

Java

It is recalled that with autoboxing the type of the primitive value determines the type of the boxed

value. For explicit boxing (using the constructors) the argument may be coerced to a wider type. �is

explains why each of the following are valid.

Object i1 = new Integer(1);
Integer i2 = new Integer(2);
Object d1 = new Double(3.0);
Double d2 = new Double(4D);
Double d3 = new Double(42);

Java

�e following are examples of valid autoboxing expressions. For each of the expressions at the right

hand side the expected value is an object type. �is triggers the autoboxing. �e result of the autoboxing

is completely determined by the type of the constants.

Integer i1 = 1; // equivalent to: Integer i1 = new Integer(1);
Object i2 = 2; // equivalent to: Object i2 = new Integer(2);
Object d1 = 3.0; // equivalent to: Object d1 = new Double(3.0);
Double d2 = 4D; // equivalent to: Double d2 = new Double(4D);

Java

�e following doesn’t work because 3 is an int literal, which triggers autoboxing and results in an

Integer. Since Integers cannot be assigned to Doubles this results in an error.

Double d = 3; // Equivalent to: Double d = new Integer(3); Don’t Try this at Home

2.2 Caching
�e boxing operation turns a primitive value into an object. �ere is no guarantee that a given primitive

value is always mapped to the same object.

Integer fst = 12345;
Integer snd = 12345;
assert(fst == snd); // May fail.

Don’t Try this at Home

However, for e�ciency reason the boxed equivalents of “small” primitive type values are cached.

Speci�cally, the boxed equivalents of the following values are cached.

3

boolean: all.

char: ’\u0000’, ’\u0001’, …, ’\u007f’.

short: all.

short: -128, -127, …, 127.

int: -128, -127, …, 127.

�is explains why the following is safe.

Integer fst = 12;
Integer snd = 12;
assert(fst == snd);

Java

3 Motivation
�is section provides a �rst motivation for generic types.

public class RunTimeException {
public static void main(String[] args) {

Object[] things = new Object[2];
things[0] = "mistake";
things[1] = 1;
Integer i = (Integer)things[1];
i = (Integer)things[0]; // bummer.

}
}

Don’t Try this at Home

�e �rst three statements in the main are pretty obvious. When we try to get values from the array, all

the compiler knows is that they’re Objects. If we try using such values as Integers then we have to use a

cast, which inconvenient. What is worse, the compiler cannot check the invalidity of the last statement

and the program will fail at run time. �e previous example is a common cause of many problems.

�e following explains why it is symptomatic. Many applications require collections consisting

of type-T objects. (In the previous example, the array played the role of the collection.) A program

manipulates a collection, C , using objects of type T . To maximise reuse C is implemented as a collection

of Object. Since Object is a superclass of T :

• �e compiler cannot assume C consists of type T objects.

• Run-time errors may occur when taking things from C .

• Run-time checks have to be added: performance degradation.

It would be nicer if we could tell the compiler: Trust me, all object in C are instances of (subclasses of)

T .

• �is would avoid certain errors at compile time.

• �is would increase e�ciency.

4

4 First Solution
Generic types provide a solution to our problem. Roughly speaking a generic type is a parameterised type.

For example: a list of JButton objects, a binary tree of Integer objects, …. Generic types are usually

used in combination with collections. A collection lets you add objects to and remove objects from the

collection. �e Java collections classes are implemented as generic types.

A generic class, G, is parameterised over another class, T. �e resulting class is written G<T>. �is is

pronounced: G of T. �e generic class guarantees that objects in G are instances of T. (Note that in general,

an instance of T may be an instance of a subclass of T.)

• Generic types allow the programmer to state what’s in the collection.

• �ey allow the compiler to detect errors at compile time.

• �ey eliminate the need for adding certain runtime checks.

• �ey allow the compiler to avoid duplication of code.

�e following example demonstrates the use of generic types. �is time the programmer is allowed to

state exactly what’s in the collection: Integers. Notice that this time no casts are needed when getting

things from the collection.

import java.util.*;

public class CompileTimeError {
public static void main(String[] args) {

ArrayList<Integer> nums;
nums = new ArrayList<Integer>();
nums.add("mistake"); // compile-time error
nums.add(1);
Integer i = nums.get(1);
i = nums.get(0);

}
}

Don’t Try this at Home

�is class CompileTimeError is equivalent to the class RunTimeException on Page 4, except that

now we’re using an ArrayList of Integer instead of an array of Object. Using generics the compiler

can detect the error at compile time, which was impossible with the previous example. In general using

generics may help detect many similar kinds of errors.

5 �e Comparable Interface
An important interface is Comparable. As suggested by the name, a Comparable object can be compared.

To implement Comparable<T> you must implement int compareTo(T that). �e method compareTo(
) may be used to implement a deep comparison. �e result of the call is an int which determines how

that compares to this. �ere are three possible cases:

Negative: this is less than that.

Zero: this is equal to that.

5

Positive: this is greater than that.

�e following is a simpli�ed example. �e class Example compares two instances by their attribute
values. �e notation ‘Comparable<Example>’ means that the class only implements Comparable for

Example. By implementing ‘Comparable<Example>’ we can compare Example objects with Example
objects. �e compiler will complain if you try to compare Example objects with objects which are not

Example objects.

public class Example implements Comparable<Example> {
int attribute;
@Override
public int compareTo(Example that) {

return (this.attribute < that.attribute ? -1
: this.attribute > that.attribute ? 1 : 0);

}
}

Java

Note that we could also have implemented the ‘Comparable’ interface. �is is equivalent to ‘Comparable<Object>’.

So, if you implement ‘Comparable<Object>’ then the signature of compareTo should be ‘int compareTo(
Object that)’. If you implement this interface then Example objects can be compared with any kind of

Object.

6 A Simple Generic Class
�e following is an example of a simple generic class. An example which uses this generic class may be

found a�er this simple class.

public class GenericClass<T> {
private T attribute;

public GenericClass(T value) { attribute = value; }
public T getAttribute() { return attribute; }
public void setAttribute(T value) { attribute = value; }

}

Java

�e ‘<T>’ a�er the name of the class on the �rst line signi�es that this is a generic class. Inside the

class the T acts as a formal type parameter which can only be used for object types. However, T is not

considered a concrete type, so you cannot use it in a cast. In general, you can use the T as if it was Object
(this is how the class is implemented). However, the T does provide some information, so you can only

use T expressions where T values or Object values are expected.

�e body of the class is quite simple, except that you see quite a few Ts. For example, the instance

attribute attribute is a T.

�e class de�nition is generic because you can specialise the T for any existing object type when you

use the class. If you want to declare a GenericClass reference variable, var, which specialises the T to

Integer then you declare the variable as

GenericClass<Integer> var; Java

A�er this declaration you can use var to access everything inside the GenericClass class with Integer
substituted for T. So the attribute in the class is now an Integer. Likewise the method setAttribute()
now takes an Integer argument.

6

By default the type parameter T is Object, so writing ‘GenericClass var’ is equivalent to writing

‘GenericClass<Object> var’.

�e following is a simple class with a main which uses our generic class.

public class SimpleMain {
public static void main(String[] args) {

GenericClass<Integer> gi;
GenericClass<Double> gd;

gi = new GenericClass<Integer>(42);
gd = new GenericClass<Double>(3.14);

System.out.println(gi.getAttribute() + " " + gd.getAttribute());
}

}

Java

�e �rst two lines in the main() declare two generic GenericClass reference variables. �e �rst

line declares the variable ‘gi’ which is a ‘GenericClass of Integer’ (GenericClass<Integer>). �e

declaration on the second line works declares the variable gd which is a GenericClass of Double.

�e fourth and ��h line assign values to the variables. �e spell ‘GenericClass<Integer>(42)’

calls the GenericClass constructor with an actual parameter of 42, which becomes an Integer due to

autoboxing. �e ‘<Integer>’ a�er the ‘GenericClass’ in the constructor call de�nes the (actual) type

parameter ‘Integer’ which is used to specialise the formal type T in the class de�nition. You usually use

it as part of the call to the constructor. Omitting the ‘<T>’ in the constructor call is equivalent to using

‘GenericClass<Object>()’.

�e ��h line works in a similar way as the fourth, except that it creates a GenericClass of Double
and assigns it to the variable gd. �e last line prints ‘42 3.14’.

7 Subtyping
We’ve already seen the Substitution Principle which states that:

Wherever a value of a given type is expected, one may also provide a value of a subtype of

that type.

�is explains why the following is allowed. A�er all, nums consists of Numbers and both Integer and

Double are subtypes of Number.

import java.util.ArrayList;

public class Example {
public static void main(String[] args) {

ArrayList<Number> nums;
nums = new ArrayList<Number>();
nums.add(42);
nums.add(3.14);
System.out.println(nums);

}
}

Java

�e following is not allowed. �e reason why this is allowed is that ArrayList<Integer> is not a

subtype of ArrayList<Number>.

7

ArrayList<Number> nums = new ArrayList<Number>();
ArrayList<Integer> ints;

nums.add(3.14);
ints = nums; // compile-time error.
// ints.toString == "[3.14]" ?

Don’t Try this at Home

Notice that it makes sense to disallow the second assignment. For example, all objects in ints
should be Integer by the fact that ints is an ArrayList<Integer>. If we allow the assignment then

an ArrayList<Number> is assigned to ints. �e ArrayList<Number> may contain Number instances,

including Doubles, which are not Integer instances.

It is also true that ArrayList<Number> is not not a subtype of ArrayList<Integer>. �is is why the

following is not allowed.

ArrayList<Number> nums;
ArrayList<Integer> ints = new ArrayList<Integer>();

nums = ints; // compile-time error.

nums.add(3.14); // nums is alias of ints.
// ints.toString == "[3.14]" ?

Don’t Try this at Home

Again it makes sense that this is not allowed. For example, if we allow this then the call to add would

add a Double to nums, which is an alias of ints. �is means we can no longer guarantee that ints consists

of Integer instances.

8 Wildcards with extends

�e following lists part of the Collection interface, which is an important Java interface. As you can

see, the interface is generic.

public interface Collection<T> {
…

public boolean addAll(Collection<? extends T> c);
…

}

Java

�e methods dest.addAll(source) adds all items in source to dest. �is only makes sense if the

things in source are subtypes of T. �e ‘?’ in ‘Collection<? extends T>’ is a wildcard. It is any type

(class/interface) extending T. �erefore, the spell ‘Collection<? extends T>’ is any Collection<S>
such that S extends T. So writing ‘Collection<? extends T> c’ guarantees that: any object in c is-a T.

Moreover, Java considers ‘Collection<? extends T>’ to be subtype of Collection<T>. (�is is

di�erent from what we’ve seen in the previous section. For example, Collection<Integer> is not a

subtype of Collection<Number>.)

�e spell Collection<? extends T> puts a constraint on the allowed Collections. Speci�cally, it

can be any Collection<E>, where E is a subtype of CollectionT. Since Java considers Collection<?
extends T> a subtype of Collection<T> we can now also use Collection<E> where Collection<T> is

expected, provided T extends E. �is was not possible before. For example in the previous section we

could not assign a Collection<Integer> reference to a Collection<Number> reference variable.

In the following, the new notation allows us to assign ints to nums because nums can be any Ar-
rayList<E> such that E extends T. Since Integer is a subtype of Number this is allowed.

8

ArrayList<Integer> ints = new ArrayList<Integer>();
ArrayList<? extends Number> nums;

ints.add(42);

nums = ints; // Not allowed before.
Number num = nums.get(0); // grand

Java

�e following is still not allowed. �e reason for the error is the same as before.

nums.add(3.14); // compile-time error Don’t Try this at Home

9 Wildcards with super

We’ve just studied the spell ‘? extends T’. It is for collections consisting of subtypes of T. �e ‘?’ denotes

any subtype of T. It restricts what can be taken from collections. In Java Collection<? extends T> is a

subtype of Collection<T>.

Java also has a spell ‘? super T’. It is for collections consisting of supertypes of T. �e ‘?’ denotes any

supertype of T. It restricts what can be added to collections. In Java Collection<? super T> a supertype
of Collection<T>.

ArrayList<Integer> ints = new ArrayList<Integer>();
ArrayList<? super Integer> superInts;

ints.add(42);

superInts = ints; // Not allowed before.
superInts.add(1); // grand
Number num = (Number)superInts.get(0); // grand.

Java

Now the following is not allowed.

Number num;
num = superInts.get(0); // compile-time error.

Don’t Try this at Home

It should be clear why this is not allowed. For example, in general we can use ArrayList<Object> for

ArrayList<? super Integer>, but we assigning an Object to an Number is not valid.

10 �eGet and Put Principle
�e Get and Put Principle helps you decide which wildcard to use:

• ‘? extends E’ is used for getting things.

• ‘? super E’ is used for putting things.

• ‘E’ is used for getting and putting.

�e following provides and example. �e <T> before the void provides a context for the two Ts in the

wildcards. You have to provide it in the de�nition for generic static methods. Without it you get an

error.

9

public static <T>
void copy(ArrayList<? super T> destination,

ArrayList<? extends T> source) { … }

Java

ArrayList<Integer> ints = new ArrayList<Integer>();
ArrayList<? super Integer> nums;

ints.add(42); // put
Integer i = ints.get(0); // get

nums = ints;
nums.add(1); // put
copy(nums, ints); // put and get.
copy(ints, ints); // put and get.

Java

�e reader is invited to con�rm why the following is still not allowed.

copy(ints, nums); // compile-time error. Don’t Try this at Home

11 Linked Lists
�is is the �rst of two sections which study linked lists in Java. �e next section studies a generic

implementation but this section studies a non-generic implementation. A�er studying both sections, it

should be clear which implementation should be preferred: the generic one.

Let’s implement linked lists in Java. Our linked lists are going to be sortable so they should contain

Comparable things. For simplicity we shall implement linked lists as follows.

• Each linked list instance has an attribute nodes. �is attribute represents what’s in the list.

• If the list is empty then nodes is null.

• Otherwise it has a head and a tail attribute.

• �e head is the �rst item in the list.

• �e tail represents the remaining items in the list.

�is suggests the following class structure for linked lists.

public class MyList { private NodeList nodes; … } Java

�e class structure for NodeList is as follows.

public class NodeList { private NodeList tail; private Comparable head; … } Java

In what follows, we shall implement the sorting with a class method of NodeList. Since inner classes

cannot have class methods this means we cannot implement NodeList as an inner class.

�e following is our class MyList. Basically, it is a wrapper class for the class NodeList which does

most of the work. �e method qsort does the sorting. It is implemented as a class (static) method.

10

public class MyList {
private NodeList nodes;

public MyList() { nodes = null; }
public Comparable head() { return nodes.head(); }
public void print() { NodeList.print(nodes); }
public void qsort() { nodes = NodeList.qsort(nodes); }
public void add(Comparable item) {

nodes = new NodeList(item, nodes);
}

}

Java

�e following is the NodeList class. �e inner class Partition and the method qsort() are presented

further on.

public class NodeList {
private Comparable head;
private NodeList tail;

public NodeList(Comparable item, NodeList list) {
head = item;
tail = list;

}

public Comparable head() { return head; }

public static void print(NodeList list) {
while (list != null) {

System.out.println(list.head);
list = list.tail;

}
}
/* omitted */

}

Java

We shall sort our list using the QuickSort algorithm. We do not have an array, but we use the same

idea:

Base case: If the list is empty then it is already sorted.

Recursion: Otherwise:

1. Let h be the head of the list.

2. Split the tail of the list into two lists leq and gt:

• �e list leq should contain the members which are less than or equal to h.

• �e list gt should contain the members which are greater than h.

3. Sort leq and gt.

4. Add h to front of gt.

5. Append leq and gt.

Unfortunately the append operation is expensive. Fortunately, we can avoid it at the expense of over-

loading qsort() and adding an extra argument in the (the ?) overloaded version. We overload qsort(
list). �e overloaded version is qsort(list, aList). Here aList is a continuation argument. It is

11

a list that should be appended to the list which is the result of Step 5 of the original algorithm. �en

qsort(list) is equivalent to qsort(list, null).

�e method qsort(list, aList) should work as follows:

Base case: If list == null return aList. Clearly this is correct as this is equivalent to appending list
and aList.

Recursion: We want to return the result of appending qsort(list) and aList. �e following shows

how this may be done.

1. Let h be the head of the list.

2. Split the tail of list as before.

3. In the original algorithm we have to (1) sort leq, (2) sort gt, (3) add h to gt, and (4) append

leq and gt. �is time we also have to append aList. If we do things in the right order then we

can actually achieve this:

(a) gt = qsort(gt, aList).

(b) Add h to front of gt.

(c) Return qsort(leq, gt).

�is works because

qsort(leq).append((qsort(gt).append(aList)).add(h))

= qsort(leq).append(qsort(gt, aList).add(h))

= qsort(leq, qsort(gt, aList).add(h)) .

Here append(NodeList that) is a method which appends that to this.

public static NodeList qsort(NodeList start) {
return qsort(start, null);

}

private static NodeList qsort(NodeList list, NodeList tail) {
if (list != null) {

Partition p = new Partition(list.head, list.tail);
list.tail = qsort(p.gt, tail);
return qsort(p.leq, list);

} else {
return tail;

}
}

Java

12

private static class Partition {
private NodeList leq;
private NodeList gt;

private Partition(Comparable item, NodeList list) {
while (list != null) {

NodeList next = list;
list = list.tail;
if (item.compareTo(next.head) < 0) {

next.tail = gt;
gt = next;

} else {
next.tail = leq;
leq = next;

}
}

}
}

Java

�e static before the class is needed. �e reason why it is required is that the constructor Partition(
) is called from the static method qsort(). �e method qsort() can see the instance attributes of its

argument(s), but it’s not an instance method: it doesn’t have a this.

When compiling our classes we notice the compiler warns about the class NodeList. �e following is

what happened. (Some lines have been rearranged to improve the presentation.)

$ javac NodeList.java
Note: NodeList.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.
$ javac NodeList.java -Xlint:unchecked
NodeList.java:43: warning: [unchecked] unchecked call to

compareTo(T) as a member of the
raw type java.lang.Comparable

if (item.compareTo(next.head) < 0) {
^

1 warning
$

Unix Session

Here the �ag -Xlint enables all recommended warnings. You can turn on special warnings by adding

them to the �ag. For example -Xlint:unchecked tells javac to warn for so-called “unchecked” calls.

Looking at this output, we can understand what triggers the warning. �e compiler can only see that

item and next.head are both Comparable, but it doesn’t know if they are compatible. More speci�cally,

it is worried that the allowed types of the argument of item.compareTo() may not include the type of

next.head for all allowed uses of the class NodeList. For example, if item is an Integer and next.head
is a String then both are Comparable, but the call item.compareTo() will fail at runtime because the

Integer class implements Comparable<Integer> but not Comparable<Object>.

In general, when the compiler issues a warning like this it means that there’s something seriously

wrong with your class. As we shall see in a moment, the compiler was right: we can write programs which

fail at runtime. Speci�cally, the runtime error occurs because of the call to item.compareTo().

�e following main should demonstrate the problem with our NodeList class.

13

public class MainSort {
public static void main(String[] args) {

MyList list = new MyList();

list.add(1);
list.add("Bummer!");
System.out.println("Before sort.");
list.print();
list.qsort();
System.out.println("After sort.");
list.print();

}
}

Don’t Try this at Home

When we run the program we get the following error. Some lines have been edited to improve the

presentation.

$ javac *.java
$ java MainSort
Before sort.
Bummer!
1
Exception in thread "main" java.lang.ClassCastException:

java.lang.Integer cannot be cast to java.lang.String
at java.lang.String.compareTo(String.java:109)
at NodeList$Partition.<init>(NodeList.java:43)
at NodeList$Partition.<init>(NodeList.java:35)
at NodeList.qsort(NodeList.java:20)
at NodeList.qsort(NodeList.java:15)
at MyList.qsort(MyList.java:18)
at MainSort.main(MainSort.java:10)

$

Unix Session

It is recalled that Line 43 in NodeList.java is the line which triggered the compiler warning when

we compiled the class. as it turns out it is exactly where the program crashed. �e reason is that this line

called node.compareTo(next.head) for Integer node and for String next.head.

�e reason why our program crashed is that our class design allowed us to put incompatible objects

in the same list. In the following section we shall use generics to overcome this problem.

12 Generic Linked Lists
In this section we shall improve our linked list implementation. We shall improve it in such a way that it

will no longer allow us to put incompatible objects in the same list. We shall not change a single line of

code, except for the fact that we shall add generic type information. To shorten the presentation we shall

omit the main class.

�e following is the wrapper for the NodeList class. �e ‘S extends Comparable<S>’ is the context

for the ‘S’ in the ‘MyList<S>’ in the qsort method. It states that S should be a subtype of Comparable<S>:

it should be possible to compare Ss.

14

public class MyList<T> {
private NodeList<T> nodes;

public MyList() { nodes = null; }
public void add(T item) { nodes = new NodeList<T>(item, nodes); }
public void print() { NodeList.print(nodes); }

static <S extends Comparable<S>>
void qsort(MyList<S> list) {

list.nodes = NodeList.qsort(list);
}

}

Java

�e following is the NodeList class. �e implementations for head() and print() have been

omitted.

public class NodeList<T> {
public T head;
public NodeList<T> tail;

public NodeList(T item, NodeList<T> list) {
head = item;
tail = list;

}

public static <S extends Comparable<S>>
NodeList<S> qsort(NodeList<S> list) {

return qsort(list, null);
}

private static <S extends Comparable<S>>
NodeList<S> qsort(NodeList<S> list, NodeList<S> tail) {

if (list != null) {
Partition<S> p = new Partition<S>(list.head, list.tail);
list.tail = qsort(p.gt, tail);
return qsort(p.leq, list);

} else {
return tail;

}
}

private static
class Partition<S extends Comparable<S>> { /* omitted */ }

}

Java

�e inner class Partition is implemented as follows.

15

private static
class Partition<S extends Comparable<S>> {

private NodeList<S> leq;
private NodeList<S> gt;

public Partition(S item, NodeList<S> list) {
while (list != null) {

NodeList<S> current = list;
list = list.tail;
if (item.compareTo(curr.head) >= 0) {

current.tail = leq;
leq = current;

} else {
current.tail = gt;
gt = current;

}
}

}
}

Java

13 ForWednesday
Study the lecture notes, and implement the generic list class.

14 Acknowledgements
�is lecture is based on [Na�alin and Wadler, 2009]. Some of this lecture is based on the Java api
documentation.

15 Bibliography

References
[Na�alin and Wadler, 2009] Maurice Na�alin and Philip Wadler. JavaGenerics. O’Reilly, 2009.

16

	Outline
	Boxing and Unboxing
	Examples
	Caching

	Motivation
	First Solution
	Comparable
	Simple Generics
	Subtyping
	Extends Wildcards
	Super Wildcards
	Get and Put
	Linked Lists
	Generic Lists
	For Wednesday
	Acknowledgements
	Bibliography

